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Abstract—The Vegetation of channels is a modern technique. It 
alters the structure of water flow, and helps to increase the bed 
roughness. It can help to dissipate incoming wave energy, regulate 
water levels, improve water quality and support recreational 
activities, whereas vegetation may reduce channel conveyance 
capacity. In this paper the deflection height of the flexible vegetation 
is obtained with the help of large-deflection cantilever beam theory. 
The flow regime can be divided into two layer, a bottom vegetation 
layer and an upper free layer for a uniform, steady, and fully 
developed turbulent open channel flow. In the bottom vegetation 
layer, the deflected plant’s resistance is calculated for plant bending, 
which is more important than the resistance formula for erect rigid 
vegetation. In the upper free water layer, to obtain the zero velocity 
gradient at the water surface a new type of polynomial velocity 
distribution technique is suggested. Two layer analytical model 
suitable for both flexible and rigid vegetation was established in this 
paper. This analysis shows that among various hydraulic parameters 
and vegetation parameters the drag coefficient is crucial for a proper 
prediction. 
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1. INTRODUCTION 

Vegetation-fluid interaction has been the subject of numerous 
studies involving laboratory, numerical, analytical, and field 
investigations. Vegetation is divided into two types depending 
on its rigidity, (i) rigid, (ii) flexible. Much of the knowledge 
gained has been gleaned from laboratory tests with various 
conditions including emergent and submerged flow through 
rigid or flexible vegetation.These studies used either artificial 
roughness elements or real specimens for the investigation of 
various properties like turbulence features, resistance induced 
by the vegetation system. 

Velocity distribution of open channel flow is no doubt a 
significant problem. Numerical and analytical solutions widely 
used, for rigid vegetation, in determining the velocity 
distribution. A numerical can give almost accurate results and 
different numerical strategies were adopted. But for practical 
application, it is not convenient as because this numerical 

solution has a high calculation cost. That’s why; a simply 
analytical solution is a good substitution for a preliminary 
estimate. The eddy viscosity model, the missing length models 
have been presented to predict the vertical profile of stream-
wise velocity. According to different force balance conditions, 
the flow region has been vertically divided into two, three or 
even four layers too. In this paper velocity profile was 
assumed to be uniform in the vegetation layer and a 
logarithmic velocity profile for the upper layer. 

The experimental data of Kubarket al 2008 was used to 
measure the deflection height of vegetation and calculate the 
error comparing with the results of that paper. 

2. DYNAMIC ANALYSIS 

2.1 Deflection of flexible vegetation 

The approach proposed here is based on the theory of large 
deflection cantilever beams, and thus better approximates 
reality. If bending occurs, the model of flow past a cylinder 
must be adjusted. Assume that each small plant segment can 
be modelled as an inclined cylinder in the flow and that 
different portions of the plant do not affect each other, so that 
a dynamic analysis can be conducted. According to the theory 
of large deflection cantilever beams (Chen 2010), assuming 
that the beam material remains linearly elastic, the relationship 
between the bending moment and the beam deformation reads 
as 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑 2

[1+(𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥 )2]3/2
=  𝑀𝑀 (𝑑𝑑)

𝐸𝐸𝐸𝐸
  (1) 

Here x and y are coordinates with y parallel to the original 
beam M is the bending moment (Nm), E is the modulus of 
elasticity of the material (Nm-2) and I is the moment of inertia 
of the cross-sectional area of the beam about the axis of 
bending (m4

Denoting𝑧𝑧 = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

, 

Chen (2010) converted the equation to 

). 
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𝑑𝑑𝑧𝑧
[1+𝑧𝑧2]3/2 =  𝑀𝑀 (𝑑𝑑)

𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑 (2) 

By integrating we obtain 
𝑧𝑧

�1+𝑧𝑧2
= ∫ 𝑀𝑀 (𝑑𝑑)

𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑑𝑑

0 = 𝐺𝐺(𝑑𝑑) (3) 

Denoting s as the distance measured along the bending curve, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= [1 + 𝑧𝑧2]1/2 (4) 

Now Eq. (3) can be converted to 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
�1−𝐺𝐺2(𝑑𝑑)

 (5) 

 

Fig. 1: Deflection of flexible vegetation 

From 𝑧𝑧 = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

, another equation for variable x can be obtained, 
which reads 

( )
( )21

G ydx
dy G y

=
−

(6)The curve length of the beam can be 

calculated as 

( )
2

0

1
hv dxs hv dy

dy
 

= +  
 

∫ (7)Employing the notation that 

in flowing water,the total load P is uniformly distributed over 
a single stem and normal to axis y,the bending moment 
function can be expressed as 

𝑀𝑀(𝑑𝑑) = 𝑃𝑃(ℎ𝑣𝑣−𝑑𝑑)2

2ℎ𝑣𝑣
(8)Vegetation height is hv

= 𝑝𝑝
2𝐸𝐸𝐸𝐸

� 𝑑𝑑
3

3ℎ𝑣𝑣
− 𝑑𝑑2 + ℎ𝑣𝑣𝑑𝑑�(9)Therefore the governing equations 

are 

. G(y) is founded to 
be 

𝐺𝐺(𝑑𝑑) =
𝑝𝑝
ℎ𝑣𝑣�

2𝐸𝐸𝐸𝐸
�
𝑑𝑑3

3
− ℎ𝑣𝑣𝑑𝑑2 + ℎ𝑣𝑣2𝑑𝑑� 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1

�1−( 𝑝𝑝
2𝐸𝐸𝐸𝐸)2( 𝑑𝑑

3
3ℎ𝑣𝑣−𝑑𝑑

2+ℎ𝑣𝑣𝑑𝑑)2
 (10) 

and 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=
( 𝑝𝑝

2𝐸𝐸𝐸𝐸)( 𝑑𝑑
3

2ℎ𝑣𝑣−𝑑𝑑
2+ℎ𝑣𝑣𝑑𝑑)

�1−( 𝑝𝑝
2𝐸𝐸𝐸𝐸)2( 𝑑𝑑

3
3ℎ𝑣𝑣−𝑑𝑑

2+ℎ𝑣𝑣𝑑𝑑)2
      (11) 

For uniform, steady open channel flow, the total load P 
exertedby flowing water over a single stem is 

21
2 D v vP C Dh Uρ=    (12) 

Where ρ is the water density, CDis the drag coefficient, D isthe 
frontal-projected width of the stem, andUv

2
v

D v

giHU
C mDh

=

is the 
velocityaveraged over the vegetation layer. 

For a uniform, steady open channel flow with dense 
vegetation, the bottom shear can be ignored and it is proposed 
that 

       (13) 

Where g is the gravitational acceleration, i is the energy slope 
which equals the slope of channel bed, H is the total flow 
depth, and m is the vegetation density, which is defined as the 
number of stem per unit bed area. 

Assuming the drag coefficient CD

giHP
m

ρ
=

 for a single stem and the 
vegetation cluster are the same. It may be different with the 
practical situation but it is suitable for a simplified theoretical 
analysis. Substituting Eq. (13) into Eq. (12) gives the total 
load P. 

     (14) 

It is the intuitive to think that the total force on a single stem is 
a function of the stem properties (its deflection height, hv, and 
frontal-projected width, D, as that shown in Eq.(12);however 
Eq. (14)is not a function of these stem properties. Although, 
for different experimental cases with various stem properties 
(hv, 

𝑆𝑆(ℎ𝑣𝑣) = ∫ 1

�1−��𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 2𝑚𝑚𝐸𝐸𝐸𝐸� �� 𝑑𝑑
3

3ℎ𝑣𝑣−𝑑𝑑
2+ℎ𝑣𝑣𝑑𝑑��

ℎ𝑣𝑣
0 𝑑𝑑𝑑𝑑 (15) 

To find the deflection height, h

D), the resistance of open channel flow will change, and 
the depth of the steady and uniform flow, H, will change 
concomitantly. So Eq. (14) includes the effect of stem 
properties completely. 

Substituting Eqs. (11) and (14) into Eq. (7) gives the curve 
length of the single stem: 

v, Eq. (15) can be solved 
numerically. With an initial given hv, G(y) can be determined 
from Eq. (9). dx/dyis then obtained from Eq. (11). The arc 
length S(hv) is obtained by substituting Eqs. (11) and (14) into 
Eq. (7). If |S(hv ε)-L|> , a new value should be assumed until | 
S(hv ε)-L|< where ε is the computational accuracy 
determining the accuracy of iterations. 
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2.2 Reynolds stress distribution 

For a uniform, steady, and fully developed turbulent open 
channel flow with flexible vegetation, the flow regime can be 
divided into a bottom vegetation layer and an upper free water 
layer, as illustrated in Fig.2. 

 

F ig. 2:  Open channel flow of submer ged vegetation 

In vegetation layer, Dijkstra and Uittenbogaard (2010) 
collated data of Reynolds stress and found that data for rigid 
and flexible stems were similar. In that the Reynolds stress 
conforms to an exponential profile and the peak value occurs 
near the top of vegetation. On this basis, the vertical 
distribution of the Reynolds stress can be expressed as 

( )| v

v

z h
z hu w u w eατ ρ ρ −
=′ ′ ′ ′= − = −

 (16) 

whereα is a constant and u and w  are the temporal 
fluctuations from the means of longitudinal and vertical 
velocities respectively. 

From the momentum balance of the flow above the vegetation, 
the interfacial shear stress between vegetation and free water 
layers can be obtained by (Yang and Choi 2010) 

( ) 2
*|

vz h vu w gi H h uρ ρ ρ=′ ′− = − =
  (17) 

where *u gih= the shear velocity at the top of the plant, h 
is the water depth above the vegetation top(i.e.h=H-hv

t
duv
dy

τ ρ=

).               
For the upper free water layer, the eddy viscosity model of 
Boussinesq was employed to describe the Reynolds shear 
stress 

 
(18) 

Where vt

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

+ 𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝑑𝑑

= 0   (19) 

From Eqs. (16) and (17), the Reynolds shear stress gives 

is the eddy viscosity. 

2.3 T wo-layer  M odel 

In the vegetation layer, the viscosity shear stress was omitted 
and only the Reynolds shear stress was considered. 
Considering the force balance between the Reynolds shear 
stress, gravity component, and resistance force imparted by 
vegetation, the momentum equation can be deduced as 

( )vy hghieατ ρ −= (20)For flexible vegetation, there are two 
types of force exerted by flowing water on a small plant 
element ds, as shown in Fig. 3 (taking a cylinder, for 
example): the drag force dFD, which isnormal to the plant 
stem, and the friction force dFf, which isalong the plant. These 
forces (per unit area of the bed) can be calculated by the 
method proposed by Bootle (1971): 

𝑑𝑑𝜕𝜕𝐷𝐷 = 1/2𝑚𝑚𝐶𝐶𝐷𝐷𝜌𝜌(𝑢𝑢 cos𝜃𝜃)2𝐴𝐴𝑓𝑓 =
1/2𝑚𝑚𝐶𝐶𝐷𝐷𝜌𝜌(𝑢𝑢 cos𝜃𝜃)2𝐷𝐷 𝑑𝑑𝑑𝑑 

𝑑𝑑𝜕𝜕𝐷𝐷 = 1
2𝑚𝑚𝐶𝐶𝑓𝑓𝜌𝜌(𝑢𝑢 sin 𝜃𝜃)2𝐴𝐴𝑑𝑑

= 1
2𝑚𝑚𝐶𝐶𝑓𝑓𝜌𝜌(𝑢𝑢 sin 𝜃𝜃)2𝜋𝜋𝐷𝐷

𝑑𝑑𝑑𝑑 

(21) 

 

F ig. 3:  V iew of a single bending stem 

whereCfis the friction coefficient,Afis the frontal area of 
thestem, As is the surface area of the stem,Cpis the perimeter 
of thestem cross section. For circular cylinders, the frontal-
projected width of the stem, D, is equal to the stem diameter 
andCpis the perimeter of the stem cross section. For non-
circular cylinders, the calculations ofAfand As in Eqs. (21) and 
(22) should be changed via the geometry of the stem cross 
section. According to Newton’s Third Law, the acting force 
and reacting force are equal and opposite in direction, and the 
resistance force imparted by vegetation can therefore be 
described by the above expressions. 

The geometric relationship gives 

(22) 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
cos 𝜃𝜃

 (23) 
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From Eq. 3 and Fig. 1 
( )G y Sinθ=  

(24) 

sin𝜃𝜃 = ( 𝑝𝑝
2𝐸𝐸𝐸𝐸

)( 𝑑𝑑3

3ℎ𝑣𝑣
− 𝑑𝑑2 + ℎ𝑣𝑣𝑑𝑑) (25) 

 
Projecting dFDand dFf

𝑑𝑑𝜕𝜕𝑥𝑥 = 𝑑𝑑𝜕𝜕𝐷𝐷𝑐𝑐𝑐𝑐𝑑𝑑𝜃𝜃 +  𝑑𝑑𝜕𝜕𝜌𝜌𝑑𝑑𝜌𝜌𝑛𝑛𝜃𝜃 (26) 

𝑑𝑑𝜕𝜕𝑥𝑥 =
1
2
𝑚𝑚𝐶𝐶𝐷𝐷𝜌𝜌(𝑢𝑢𝑐𝑐𝑐𝑐𝑑𝑑𝜃𝜃)2𝐷𝐷 𝑑𝑑𝑑𝑑 . 𝑐𝑐𝑐𝑐𝑑𝑑𝜃𝜃

+
1
2
𝑚𝑚𝐶𝐶𝑓𝑓𝜌𝜌(𝑢𝑢𝑑𝑑𝜌𝜌𝑛𝑛𝜃𝜃)2𝜋𝜋𝐷𝐷 𝑑𝑑𝑑𝑑 . 𝑑𝑑𝜌𝜌𝑛𝑛𝜃𝜃 

on the x-axis gives the resultant 
forcedFx: 

𝑑𝑑𝜕𝜕𝑥𝑥 = 1
2
𝑚𝑚𝜌𝜌𝑢𝑢2𝐷𝐷{𝐶𝐶𝐷𝐷 �𝑐𝑐𝑐𝑐𝑑𝑑3𝜃𝜃. 𝑑𝑑𝑑𝑑

𝑐𝑐𝑐𝑐𝑑𝑑𝜃𝜃
� + 𝜋𝜋𝐶𝐶𝑓𝑓[𝑑𝑑𝜌𝜌𝑛𝑛3𝜃𝜃 𝑑𝑑𝑑𝑑

𝑐𝑐𝑐𝑐𝑑𝑑𝜃𝜃
]  (27) 

 
Substituting Eqs.  (12),(21), (22), (24) and  (25) into Eq.  (27) 
gives the resultant force of the vegetation in the horizontal 
direction 

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝑑𝑑

= 1
2
𝑚𝑚𝜌𝜌𝑢𝑢2𝐷𝐷{𝐶𝐶𝐷𝐷 �1 − �𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 2𝑚𝑚𝐸𝐸𝐸𝐸� �

2
� 𝑑𝑑

3

3ℎ𝑣𝑣
− 𝑑𝑑2 +

ℎ𝑣𝑣𝑑𝑑2+ 

𝐶𝐶𝐷𝐷𝜋𝜋
[�𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 2𝑚𝑚𝐸𝐸𝐸𝐸� �� 𝑑𝑑

3
3ℎ𝑣𝑣−𝑑𝑑

2+ℎ𝑣𝑣𝑑𝑑�]3

�1−[�𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 2𝑚𝑚𝐸𝐸𝐸𝐸� �� 𝑑𝑑
3

3ℎ𝑣𝑣−𝑑𝑑
2+ℎ𝑣𝑣𝑑𝑑�]2

 (28) 
 
From Eq. (28), one can find that the resistance force of the 
bending vegetation and that of the erect one are significantly 
different. The drag force of erect vegetation is 
0.5CDmDρu2

( )

3
3

2
22 3

2
2

3
2

2 1

2 3
1

2 3
1

2 3

vy h

f p v
v

D v
v

v
v

gi he
u

giH yC C y yh
mEI hgiH ym C D y yh

mEI h giH y y yh
mEI h

αα

ρ
ρ

ρ

− + =
     − +              − − + +   

         − − +    
     

(Hoerner 1965). In addition to the drag force 
component, the friction force component was included in the 
resistance formula of bending vegetation. 

Substituting Eqs. (20) and (27) into Eq. (19) to solve the 
momentum equation, the vertical velocity distribution in the 
vegetation layer is obtained 

  (29) 

When y= hv, the velocity at the top of the plant uv

( )
32

22

22

2 1

6
1

6
1

6

v

v
f p

v
D

v

gi h
u

giHhC C
mEIgiHhm C D

mEI giHh
mEI

α

ρ
ρ

ρ

+
=

         − +   
      −  

  

 is 

  (30)    

 
For the upper free water layer, the viscosity shear stress can 
also be omitted, and only the Reynolds shear stress needs to be 
considered. The Boussinesq eddy-viscosity concept is applied 
to solve the Reynolds shear stress and the governing equation 
of the upper free water layer reads 

𝜌𝜌𝜌𝜌𝜌𝜌(𝜌𝜌 − 𝑑𝑑) = 𝜌𝜌 𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑
𝑉𝑉𝑡𝑡(31)IntegratingEq.(31)gives  

𝑢𝑢 = 𝜌𝜌𝜌𝜌
𝑉𝑉𝑡𝑡

(𝜌𝜌𝑑𝑑 − 1
2
𝑑𝑑2) + 𝐶𝐶1  (32) 

Where C1 is the integrating constant, with u=uv, at y= hv

𝐶𝐶1 = 𝑢𝑢𝑣𝑣 −
𝜌𝜌𝜌𝜌
𝑉𝑉𝑡𝑡
�𝜌𝜌ℎ𝑣𝑣 − 1

2
ℎ𝑣𝑣2� (33) 

The vertical velocity distribution for the upper free water layer 
is 

, it 
follows that 

( )2 22 2
2 v v v

t

giu y Hy Hh h u
v

= − + − + + , vy h>   (34)  

Huaiet al. (2009a) proposed a vertical velocity distribution for 
the upper free water layer under the condition of steady and 
uniform flow 

* ln v
v

uH zu u
h k h

 = + 
 

, vy h>  (35) 

Where k = 0.41 
Integrating Eq. (34) from the top of the vegetation to the water 
surface, and then dividing by h, gives the velocity averaged 
over the free water layer U
𝑈𝑈𝑤𝑤1 = 1

ℎ ∫ 𝑢𝑢(𝑑𝑑)𝜌𝜌
ℎ𝑣𝑣 𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌ℎ2

3𝑉𝑉𝑡𝑡
+𝑢𝑢𝑣𝑣 (36) 

In the same way, integrating Eq. (35) from the top of the 
vegetation to the water surface, and then dividing by h, gives 
the velocity averaged over the free water surface, and then 
dividing by h, gives the velocity averaged over the free water 
layer U

w1  

𝑈𝑈𝑤𝑤2 = 1
ℎ ∫ 𝑢𝑢(𝑑𝑑)𝜌𝜌

ℎ𝑣𝑣 𝑑𝑑𝑑𝑑 = 𝜌𝜌�𝜌𝜌𝜌𝜌𝜌𝜌
𝐾𝐾ℎ2 (𝜌𝜌𝐻𝐻𝑛𝑛

𝜌𝜌
ℎ𝑣𝑣
− ℎ) + 𝑢𝑢𝑣𝑣  (37) 

 
Making Eqs. (36) and (37) equals, the eddy viscosity can be 
expressed as 

w2 

𝑉𝑉𝑡𝑡 = 𝐾𝐾(𝜌𝜌𝜌𝜌)
1
2ℎ

7
2

3𝜌𝜌2𝐻𝐻𝑛𝑛 �
𝜌𝜌
ℎ𝑣𝑣�−3𝜌𝜌ℎ

(38)The vertical velocity distribution for 

 
 the upper free water layer is obtained by substituting Eq. (38) 
into Eq. (34): 
 

𝑢𝑢 =
3𝜌𝜌2𝐻𝐻𝑛𝑛 �

𝜌𝜌
ℎ𝑣𝑣�−3𝜌𝜌ℎ

𝐾𝐾ℎ
7
2

× (−𝑑𝑑2 + 2𝜌𝜌𝑑𝑑 − 2𝜌𝜌ℎ𝑣𝑣 + ℎ𝑣𝑣2) + 𝑢𝑢𝑣𝑣  (39) 

 
From Eq. (39), one can find that the velocity gradient is zero 
at the water surface: 

𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

|𝑑𝑑=𝜌𝜌 = 0 (40) 

3. R E SUL T S A ND A NA L Y SI S 

3.1 Deflection heights 

Deflection heights is solved numerically from the Eq, (15), 
which is solved through an algorithm in MATLAB software. 
These results are compared with the experimental data of 
Kubraket al. (2008) and the results. In the experiment of 
Kubraket al. (2008), two horizontal components of mean 



Analysis of Submerged Flexible Vegetation for Open Channel Flow 1079 
 

 

Journal of Basic and Applied Engineering Research 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 13; April-June, 2015  

velocity (longitudinal and transversal) were measured in a 16 
m long, 0.58 m wide glass-walled flume. 

Table 1:  Demand and deficit for  user s in command 

Case Initial 
Plant 

Height 
(m) 

Measured 
deflected 

height (m) 

Calculated 
deflected 

height (m) 

Calculation 
error (m) 

1.1.1 0.165 0.163 0.163 0.000 
1.1.2 0.165 0.163 0.163 0.000 
1.1.3 0.165 0.164 0.164 0.000 
1.1.4 0.165 0.164 0.164 0.000 
1.2.1 0.165 0.161 0.161 0.000 
1.2.2 0.165 0.162 0.161 -0.001 
1.2.3 0.165 0.161 0.161 0.000 
1.2.4 0.165 0.162 0.162 0.000 
2.1.1 0.165 0.154 0.153 -0.001 
2.1.2 0.165 0.154 0.154 0.000 
2.1.3 0.165 0.155 0.154 -0.001 
2.2.1 0.165 0.132 0.131 -0.001 
2.2.2 0.165 0.131 0.131 0.000 
2.2.3 0.165 0.133 0.132 -0.001 
3.1.1 0.165 0.151 0.151 0.000 
3.1.2 0.165 0.152 0.151 -0.001 
3.1.3 0.165 0.153 0.153 0.000 
3.2.1 0.165 0.131 0.131 0.000 
3.2.2 0.165 0.139 0.138 -0.001 
4.1.1 0.165 0.151 0.151 0.000 
4.1.2 0.165 0.153 0.153 0.000 
4.1.3 0.165 0.157 0.156 -0.001 
4.2.1 0.165 0.138 0.138 0.000 
4.2.2 0.165 0.142 0.142 0.000 
4.2.3 0.165 0.143 0.142 -0.001 

 
Calculated error = (calculated deflected height – measured 
deflected height) 

From Table 1 we can see that the theoretical results have good 
similarity with the experimental data (Kubrak et al. 2008). In 
some cases calculated data were slightly smaller than the 
experimental data. This was happened because of interaction 
among bending plants, which has not been considered in the 
theoretical analysis. So now the deflection height is a known 
parameter in the model verification to obtain the velocity 
distribution. 

3.2 Deter mination of coefficient. 

There are three parameters the drag coefficient CD, friction 
coefficient Cf, and constantα all are required for the two-layer 
model. 

3.2.1 Dr ag coefficient C D heights. 

The local drag coefficient CD is determined as that suggested 
by Schlichting (1979) 

CD = 3.07RD
-0.168

≤
, RD< 800 

CD = 1.0,  800 RD ≤ 800   (41) 
CD = 1.2,  8000 ≤RD≤  10

𝑅𝑅𝐷𝐷 = 𝑢𝑢𝐷𝐷𝑐𝑐𝑐𝑐𝑑𝑑𝜃𝜃
𝛾𝛾

 (42) 
Here u is the flow velocity at depth y and υ is the kinematic 
viscosity of water. From Eq. (41), When RD<800, the local CD 
varies with the flow velocity. According to the experimental 
results presented by Kubraket al. (2008. We concluded that RD 
is less than 800 in the vegetation layer, and CD thus varies 
between 1 and 1.5. 

3.2.2 F r iction coefficient C f. 

The local friction coefficient Cf is determined suggested by 
Suryanarayana and Arici (2002) 

5 

Where RD denotes the drag Reynolds number, which can be 
calculated as 

0.5

1.328 ,f
F

C
R

= 55 10FR < ×  

0.5

0.074 1740 ,f
F F

C
R R

= −
5 75 10 10FR× < <  (43) 

2.584

0.455 1700 ,
log( )f

F F

C
R R

= −
710 FR<  

Where RF denotes the friction Reynolds number, which can be 
calculated as 

sin
F

suR θ
υ

= (44)Here s is the bending curve length 

measured from the base of the plant to the point RF to be 
calculated. In the analytical model, a bulk friction coefficient 
instead of the local one is needed. In this model, the bulk 
friction coefficient Cf is taken as 0.4. 

3.2.3 C oefficient α. 
The value of α has been related to the hydraulic and vegetation 
characteristics. From Kubrak et al. (2008) a suitable value of α 
can be obtained from the expression is 

( )0.03
D

v

C mD
H h

α =
−

(45)The result shown that α varies 

with drag coefficient, vegetation frontal projected width, the 
total flow depth and the deflection height of plants. The fitting 
of α is shown in Fig. 4. 
 

 
F ig. 4:  T he fir  of alpha 
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3.2.4 M odel ver ification 

The two layer model of flexible vegetation was applied to the 
experimental data suggested by Kubraket al. (2008) for the 
model verification. Three sets of parameter were taken from 
Kubraket al. (2008). The parameters are given in the Table 2. 

Table 2:  Par ameter s of exper iments 

Run 1.2.1 2.2.1 4.1.1 
Cross-sectional 

shape 
Ellipse Ellipse Ellipse 

I 0.0174 0.0174 0.0087 
Α 84.15 36.97 34.88 
CD 1.4 1.4 1.4 

D (m) 0.00095 0.00095 0.00095 
CP (m) 0.0026067 0.0026067 0.0026067 
H (m) 0.2236 0.2131 0.2421 
L (m) 0.165 0.165 0.165 
hv(m) 0.161 0.132 0.151 

EI (Hm2 5.81E-05 ) 5.81E-05 5.81E-05 
m (stems/m2 10000 ) 2500 2500 

 
The velocity comparison is presented in Fig. 5.  

 

F ig. 5:  C ompar ison of measurement and analytical results 

It can be concluded that the theoretical results are in good 
agreement with the experimental data, which means that the 
theoretical formula can be applied to predict the vertical 
velocity distribution of open channel flow with submerged 
flexible and rigid vegetation. 

4. C ONC L USI ONS 

A two-layer analytical model suitable for open channel flow 
with both flexible vegetation and rigid vegetation was 
established in this paper. Compared with other methods, such 
as numerical solutions, laboratory measurements, and field 
investigations, this analytical model is convenient to use in 
practical applications, especially for the purpose of a primary 
evaluation. Adopting the theory of a large-deflection 
cantilever beam, the deflection height of the flexible 
vegetation can be obtained. Based on the momentum balance 
in the vegetated layer, vertical profile of the stream-wise 
velocity in that layer was deduced.  

This model can be used to artificial and natural channels in 
which the flow is approximately uniform and steady, and basic 
hydraulic parameters (e.g. energy slopeiand water depth H) 
andvegetation parameters (e.g. the vegetation density m, 
deflectionheighthv, module of elasticity E, and cross-sectional 
shape of thestems, which is necessary to obtain the frontal-
projected width D, moment of inertia I and perimeterCpof the 
cross sectionof stems) are required. The sensitivity analysis 
shows that the determination of those parameters, especially 
the drag coefficient CDis crucial for a sound prediction. 

Although there are many studies on velocity distribution of 
open channel flow with submerged flexible plants, data of E 
(i.e. module of elasticity of the material) were rare. For this 
reason, Kubrak et al. 2008 is adopted for verification, and the 
application with a wider range of E shouldbe checked. For the 
limited cases studied here, the bulk friction coefficientCfwas 
taken as 0.4. But one should notice thatfor different 
experimental conditions and materials, the frictioncoefficient 
may be different. 
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